Vergangene Projekte - Past Projects

Laufende Projekte - Current Projects

Projekte mit der Industrie - Industrial Projects

Kontrollierbarkeit und optimale Steuerung interagierender quanten-dynamischer Systeme (COCIQS) - Controllability and Optimal Control of Interacting Quantum Dynamical Systems (COCIQ)

Kurzbeschreibung - Abstract

The goal to achieve full control on complex, high-dimensional quantum systems in an optimal manner poses new challenges for system and control theory. The issue is of paramount importance for the development of future key technologies, such as quantum computing, quantum communication and the manipulation of nanosystems. New challenges arise if the interaction structure is fully taken into account to enable new control strategies. This research project aims at achieving a fundamental understanding of controllability properties and optimal control strategies for finite-dimensional interacting quantum dynamical systems, where structural properties arising from the global tensor product structure of the state spaces will play a crucial role. Our methods will combine techniques from nonlinear control, Lie group theory, and optimal control on function spaces.

Projektleiter - Project Manager: Prof. Dr. Alfio Borzì

Beteiligte Wissenschaftlerinnen und Wissenschaftler - Participating scientists: Prof. Dr. Uwe Helmke

Laufzeit: - Projekt period: 10.2011 - 10.2014
Förderinstitution: - Funding institution: DFG
Genehmigungssumme - Funding amount: 185.000,00 €
Genehmigungsdatum - Granting date: 25.10.2011
Förderkennzeichen - Funding number: Bo3580/2-1

Mathematische Theorie direkter und inverser transienter Wirbelstromprobleme - Mathematical theory of direct and inverse transient eddy current problems

Kurzbeschreibung - Abstract

Transient excitation currents generate electromagnetic fields which in turn induce electric currents in proximal conductors. Mathematically, this can be described by partial differential equations, the eddy-current equations, which are obtained by neglecting the dielectric displacement currents in Maxwells equations. The eddy-current equations are of parabolic-elliptic type: In insulating regions, the field instantaneously adapts to the excitation (elliptic behaviour), while in conducting regions, this adaptation takes some time due to the induced eddy currents (parabolic behaviour). Eddy current effects are used for remotely detecting conducting objects and to non-invasively identify flaws inside a conductor. In mathematical terms this leads to the inverse problem of reconstructing the conductivity coefficient in the eddy current equations from knowledge of the solution(s). Goal of the project is to utilize a unified variational theory for the parabolic-elliptic equations to theoretically study identifiability questions in the inverse problem and derive rigorously justified reconstruction strategies.

Projektleiter - Project Manager: Prof. Dr. Bastian von Harrach

Beteiligte Wissenschaftlerinnen und Wissenschaftler - Participating scientists: Dipl.-Math. Lilian Arnold

Laufzeit: - Projekt period: 08.2010 - 07.2013
Förderinstitution: - Funding institution: DFG
Genehmigungsdatum - Granting date: 17.08.2010

ESF OPTPDE Workshop:
Schnelle Verfahren für die Simulation, Inversion und Steuerung von Wellengleichungsmodellen -
Fast Solvers for Simulation, Inversion, and Control of Wave Propagation Problems

Kurzbeschreibung - Abstract

This Workshop aims at fostering development and application of fast computational techniques to direct and inverse wave problems that are of primal importance in strategic scientific and engineering areas. The ESFWaves workshop will also provide a forum for reseachers to discuss recent advances on the modeling and approximation of wave phenomena and on the formulation of control and inverse problems governed by time-dependent and standing wave equations as Maxwell and Helmholtz equations.

Organisation - Organizers: Prof. Dr. Alfio Borzì, Prof. Dr. Cornelis W. Oosterlee

Datum - date: 26.-28.09.2011
Förderinstitution - Funding institution: ESF ( European Science Foundation)
Genehmigungssumme - Funding amount: 23.000,00 €
Genehmigungsdatum - Granting date: 07.03.2011
Förderkennzeichen - Funding number: 3351